Notes On Intelligent Machine Design: Sapient Mimicry

Scroll down to content

The prospect of human-like machine intelligence seems to dazzle and thrill the public to no end. Consider the 2018 article from Scientific America titled, A New Supercomputer Is The World’s Fastest Brain-Mimicking Machine which speaks about the issue of brain-emulation at great length. The principal question, however, that many people are not asking in relation to the topic is: Why start from the design premise that the [intelligent] machine should be as maximally similar to us [humans] as possible?

We already know (by and large) what the human system can do and what it can not (just not precisely how, in every detail, the brain, for instance is not fully understood, hence why it cannot, as yet, be replicated). In the design of non-intelligent machines the normative principal is accounting for operations which humans cannot do, rather than for operations which they can. Yet when designing for intelligent machines the desire is completely different and the movement is towards maximal sapiency. There are some general reasons why you’d want to emulate human brain function, such as in the design of a partial cortex replacement module for brain-damaged patients, for example, but typically, in most fields of machine intelligence, one isn’t going to require maximal similarity. Indeed, one would actually have to degrade certain present machine capabilities to make intelligent machine maximally similar to ourselves because a intelligent machine that is of comparable average human intelligence (100 IQ) can do numerous things that humans cannot do and would be able to do them much faster because neurons – nerve cells which process and transmit electrochemical signals – in our brains transmit signals every 0.5 milliseconds and fire 200 times per second. There are approximately 100 billion neurons in any given human brain. Each neuron connects to 1000 other neurons. Thus, the simple equation: 100 billion x 200 x 1000 = 20 million billion bits of information transmitted per second. Such a large number might strike one as indicative of great speed, but transmission speed of a system alone means little if it is not compared to some other information exchange system. The human brain when compared to copper electrical wire is quite slow and even slower when compared to fiber optics. Thus, a true AI that was capable doing everything which a human mind could do would be able to not just maintain memory much better, but also think much faster. However, speed here should not be confused with processing power.

Despite the fact that computers are much, much faster at transmitting data, the human brain is much, much more efficient in its arraignment and storage of information. For example, in 2013, a team of researchers at the Riken Research Institute of Japan attempted to utilize the K supercomputer to simulate human brain activity. Simulating 1 second of human brain activity required 82,922 processors and the 4th fastest computer in the world at that time, at testament to the organ’s innate complexity. Yet for us, we require only the 15 centimeters and 3 pounds of mushy, gray matter suspended within our skulls. Women require slightly less size (as male brains are, on average, larger than females). Thus the obvious line of future design development should be to continue to emulate the compact efficiency of human (and other animal) brains whilst moving as far away from emulation of human neurons as possible due to their sluggishness in comparison to computer wiring.

More interesting, at least to me, than either of these design trajectories, are those areas of function which machines can perform which bares no direct or obvious human comparison. Much of this falls under the rubric of machine vision, such as infrared sensors, meta-image-creation, etc. All of these functions are unique to our creations and thus intensify our own sensory arsenal. The problem might best be summed up by the question: Why build a replica of a human hand when one could build a better hand? Even if you wanted to replace a human hand that was missing to merely replicate it is fine but to improve upon the prevailing design is even better. When one is designing a boat, the designer doesn’t try to make the boat as maximally humanoid as possible. This holds true for virtually every mechanical device. Whilst this is obvious upon introspection and is thus, in certain circles, implicit, it needs to be made explicit. The move from implicit design philosophy (preconditioning which trends towards particular eventualities) to explicit design philosophy (present-conditioning towards a particular eventuality) is analogous to moving from the purely instinctual to the theoretical, from gut-feeling to formal logic and for that reason, so much more the efficacious.


Sources

  1. Andrian Kreye et al. (2018) The State of Artificial Intelligence.
  2. John C. Mosby. (2018) The Real Key To Protecting US National Security Interests In Space? Launch Capability. Modern War Institute.
  3. Mindy Weisberger. (2018) A New Supercomputer Is The World’s Fastest Brain-Mimicking Machine.
  4. Neurons & Circuits.
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: